Crystal Structure of Ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$

By D. Tranqui,* R. D. Shannon \dagger and H.-Y. Chen
Central Research and Development Department, \ddagger E. I. du Pont de Nemours and Co., Experimental Station, Wilmington, Delaware 19898, USA
S. Ilima
Department of Physics, Arizona State University, Tempe, Arizona 85281, USA
and W. H. Baur
Department of Geological Sciences, University of Illinois, Chicago, Illinois 60680, USA

(Received 18 September 1978; accepted 9 May 1979)

Abstract

Ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ is monoclinic with space group $P 2_{1} / m$ and $a=11.546$ (3), $b=6.090$ (2), $c=16.645$ (3) \AA, $\beta=99.5(1)^{\circ}$. The substructure is identical to the previously refined structure of $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ [Völlenkle, Wittman \& Nowotny (1968). Monatsh. Chem. 99, 1360-1371]. The superstructure was solved and refined to $R_{w}=6 \%$ for 1390 independent reflections. The Li atoms are ordered and occupy 19 of 42 sites in the sevenfold supercell. The $\mathrm{LiO}_{4}, \mathrm{LiO}_{5}$ and LiO_{6} polyhedra are linked by edge- and corner-sharing. There is good three-dimensional connectivity between Li sites at distances of $2.9 \AA$ from one another; most Li atoms share edges with at least two adjacent polyhedra. The ordered nature of $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ is consistent with the low ionic conductivity of pure $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ whereas good conductivity of $\mathrm{Li}_{4-x} \mathrm{Si}_{1-x} \mathrm{P}_{x} \mathrm{O}_{4}, \mathrm{Li}_{4-2 x} \mathrm{Si}_{1-x} \mathrm{~S}_{x} \mathrm{O}_{4}$ and $\mathrm{Li}_{4+X} \mathrm{Si}_{1-x} \mathrm{Al}_{x} \mathrm{O}_{4}$ is consistent with the good Li site connectivity and the introduction of either Li vacancies or Li interstitials.

Introduction

Compositions of the type $\mathrm{Li}_{4-x} \mathrm{Si}_{1-x} \mathrm{P}_{x} \mathrm{O}_{4}, \mathrm{Li}_{4-2 x^{-}}$ $\mathrm{Si}_{1-x} \mathrm{~S}_{x} \mathrm{O}_{4}$ and $\mathrm{Li}_{4+x} \mathrm{Si}_{1-x} \mathrm{Al}_{x} \mathrm{O}_{4}$ have good Li^{+} ion mobility (Shannon, Taylor, English \& Berzins, 1977; Hu, Raistrick \& Huggins, 1976; Shannon \& Taylor, 1977). The structure of the parent compound $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ is of interest in order to explain the high Li conductivity of the substituted compounds. Völlenkle, Wittman \& Nowotny (1968) reported the structure of

[^0]$\mathrm{Li}_{4} \mathrm{SiO}_{4}$ with the monoclinic unit cell $a=5 \cdot 14, b=$ $6 \cdot 10, c=5 \cdot 30 \AA, \beta=90.5^{\circ}$ and space group $P 2_{1} / m$.

The structure was reported to contain six crystallographically different Li atoms. All the Li sites were partially occupied with occupancy factors ranging from $\frac{1}{3}$ to $\frac{2}{3}$. This structure is inconsistent with the knowledge that: (1) pure $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ is a poor ionic conductor with $\sigma(\mathrm{RT})<10^{-5}(\Omega \mathrm{~m})^{-1}$ (West, 1973; Gratzer, Bittner, Nowotny \& Seifert, 1971; Hodge, Ingram \& West, 1976); (2) creation of Li vacancies or interstitials raises the conductivity by a factor of $\sim 10^{3}-10^{4}$.

These discrepancies led us to suspect that the Li positions were incorrect. An infrared absorption study by Lazarev, Kolesova, Solntseva, \& Mirgorodskii (1973) suggested that the space group is really $P 2_{1}$ rather than $P 2_{1} / m$. A second harmonic generation (SHG) test, however, showed $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ to be most likely centrosymmetric and this means that space group $P 2_{1}$ is not probable. Finally, electron diffraction patterns of certain crystals revealed weak superstructure reflections and a unit cell much larger than that found by Völlenkle, Wittman \& Nowotny (1968). This paper describes the structure of ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$.

Experimental

Crystals of $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ were grown by the Czochralski method from a melt at $\sim 1523 \mathrm{~K}$. Starting materials were $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}$ and SiO_{2}. Emission spectrographic analysis showed $\sim 0.5 \%$ total impurities (Shannon, Taylor, English \& Berzins, 1977). A powder diffraction pattern taken with a Hägg-Guinier camera ($298 \mathrm{~K}, \mathrm{Cu}$ $K a$ radiation and a KCl internal standard) was indexed using the Völlenkle, Wittman \& Nowotny (1968) cell. Refined cell dimensions of this subcell are $a=$ 5.148 (1), $b=6.099$ (1), $c=5.296$ (1) $\AA, \beta=90.31^{\circ}$, and $V=166 \cdot 3 \AA^{3}$. No superlattice lines were observed even with a 12 h exposure.

Specimens were prepared for electron diffraction (ED) by grinding a crystal in an agate mortar. Small fragments ($0 \cdot 1-1 \mu \mathrm{~m}$ diameter) were then collected onto specimen grids. Crystal fragments with orientations having low-index zone axes with respect to the incident electron-beam directions were chosen and aligned with a goniometer stage in the microscope (100 kV). ED patterns with various orientations were collected from nearly 100 fragments. Interpretable electron micrographs could not be obtained because the crystals decomposed very quickly under intense electron-beam irradiation. Therefore, only ED patterns were studied.

Figs. $1(a)$ and $1(b)$ show two different reciprocallattice sections with zone axes of [010] and [211], respectively. Weak extra spots in both patterns indicate a superstructure. The a_{s} and b_{s} axes of the superstructure cell are parallel to [30i] and [102], respectively, with lengths of $\frac{y}{y}[301]$ and $\frac{4}{[102]}$. All the patterns could be indexed by the X-ray diffraction data, confirming that the crystal had not changed structurally in the process of specimen preparation (mechanical deformation) nor during electron-beam irradiation. Approximate unit-cell parameters determined from these photos were $a=11 \cdot 35, b=6 \cdot 10, c=$ $16.5 \AA$ and $\beta=98^{\circ}$. The superstructure was not always observed, suggesting that the superstructure does not occur in an entire crystal, but forms probably as domains. The domain size must not be smaller than an order of $1 \mu \mathrm{~m} . \mathrm{Li}_{4} \mathrm{SiO}_{4}$ must, therefore, exist in both an ordered and a disordered state.

Intensity data were obtained on a crystal approximately $0.2 \times 0.3 \times 0.3 \mathrm{~mm}$ with a Picker FACS-I diffractometer. The crystal was oriented with the spindle parallel to \mathbf{b}. Although the superstructure was not observed in all crystals using electron diffraction, it was observed in two separate crystals chosen for X-ray analysis. With nine subcell reflections, least-squares refinement gave $a=5 \cdot 147$ (2), $b=6.094$ (2), $c=$ 5.293 (2) \AA and $\beta=90.33(4)^{\circ}$. The supercell dimensions can be obtained from the transformation:

$$
\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)_{\text {supercell }}=[T]\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)_{\text {subcell }},
$$

with

$$
[T]=\left(\begin{array}{ccc}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 3
\end{array}\right)
$$

and the atomic parameters can be derived by:

$$
\begin{aligned}
& x_{\text {supercell }}=[\tilde{T}]^{-1} x_{\text {subcell }} ; \\
& {[\tilde{T}]^{-1}=\frac{1}{7}\left(\begin{array}{lll}
3 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 2
\end{array}\right) .}
\end{aligned}
$$

(a)

(b)

Fig. 1. (a) Electron diffraction pattern showing reciprocal-lattice section with zone axis [010]. (b) Electron diffraction pattern showing reciprocal-lattice section with zone axis [211].

Fig. 2. Relationship of subcell to supercell.

Fig. 2 shows the relationship of the subcell to the supercell. Using the transformation matrix, we obtained the supercell parameters: $a=11 \cdot 551, b=6 \cdot 094, c=$ $16.719 \AA, \beta=99.03^{\circ}$. The volume of this supercell is seven times that of the subcell. Table 1 shows the powder pattern of $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ indexed on this supercell. Refined cell dimensions from these data are: $a=$ 11.546 (3), $b=6.090$ (2), $c=16.645$ (3) \AA and $\beta=$ $99.5(1)^{\circ}$. These parameters were used for all calculations involving bond lengths and angles. Zero and upper level precession photographs along the b axis confirmed the supercell found from electron diffraction. The space group was assumed to be $P 2_{1} / m$.

Table 1. Powder diffraction data for $\mathrm{Li}_{4} \mathrm{SiO}_{4}$

	$d_{\text {obs }}$	$d_{\text {calc }}$	I / I_{0}
-103	5.279	5.284	30
201	$5 \cdot 121$	$5 \cdot 123$	20
-113	3.988	3.991	65
211	3.922	3.920	60
-302	3.693	3.685	15
104 \}	3.669	3.672	50
2031	3.669	3.654	50
-204	3.623	3.625	20
020	3.045	3.045	15
-304	3.045	3.049	15
-206	2.643	$2 \cdot 642$	90
-123	$2 \cdot 640$	2.638	100
221)		2.617	
-222	2.620	$2 \cdot 613$	50
-411		$2 \cdot 608$	
$106)$		2.565	
410	2.571	$2 \cdot 579$	70
402	2.571	2.561	70
304		2.581	
-216	2.427	2.424	5
-405	$2 \cdot 352$	$2 \cdot 351$	40
-322)		$2 \cdot 347$	
007	$2 \cdot 348$	$2 \cdot 345$	40
124	$2 \cdot 348$	$2 \cdot 344$	40
223		$2 \cdot 339$	
501	$2 \cdot 201$	2.206	5
017 \}	$2 \cdot 191$	2.188	20
-415	$2 \cdot 191$	2.194	20
-406		$2 \cdot 159$	
-511	2.159	$2 \cdot 158$	5
-307	$2 \cdot 159$	$2 \cdot 161$	5
315		$2 \cdot 153$	
-416		2.034	
-505	2.032	2.035	5
-317	2.032	2.036	5
-423		2.026	
031	2.013	2.014	10
$-133)$		1.895	
415		1.894	
-326	1.897	1.893	10
-603	1.897	1.892	10
033		1.903	
513		1.890	
504)		1.864	
118	1.866	1.868	10
307	1.866	1.862	10
-425		1.861	

A total of 4001 reflections from the upper half of the sphere (with $3<2 \theta<50^{\circ}$) were collected with Mo $K \bar{\alpha}$ radiation with a Zr filter. The intensities were measured by scanning in the $2 \theta / \omega$ mode at $0.4^{\circ} \mathrm{min}^{-1}$ and a scan range of $\Delta \theta=1.40+0.02 \tan \theta$. Background was obtained by stationary counting at the scan extremes for 40 s each. The 623 reflection was chosen as an internal standard and measured every 50 reflections. No significant deviation in its intensity was observed. A ψ scan on the 060 reflection indicated that the effects of absorption were small. Therefore, no absorption correction was made. Although the number of variables is somewhat high, no measurements of intensities with 2θ >50 were collected because at high angles the superstructure reflections became very weak. The 4001 nonunique reflections corresponded to 1390 unique reflections for which $I>3 \sigma(I)$. Intensities were corrected for Lorentz and polarization factors. Scattering factors for neutral atoms were taken from International Tables for X-ray Crystallography (1974).

The subcell contains two $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ formula units. The first refinement using only the subcell reflections with the starting atomic parameters given by Völlenkle, Wittman \& Nowotny (1968) quickly converged to $R=$ 0.05 . The $\mathrm{Si}-\mathrm{O}$ lengths and $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles are only slightly different from those of Völlenkle, Wittman \& Nowotny (1968). In this refinement, the eight Li atoms per unit cell were allowed to occupy statistically three sets of general equivalent positions (multiplicity of four) and three sets of special equivalent positions (multiplicity of two) for a total of 18 individual atomic sites per subcell.

The atomic coordinates of the SiO_{4} group found in the previous refinement are in fact the average positions of the seven crystallographically independent groups in the superstructure and the 56 Li atoms per supercell are in 18 individual sites of the subcell. The problem was to locate 56 Li atoms among $126(=7 \times 18)$ possible individual atomic sites in the unit cell of the superstructure. Of these 126 potential sites, some pairs cannot be occupied simultaneously because their distances would be too short. Based on such geometrical restrictions, 12 Li occupation models were found. Refinements varying only scale factor, overall temperature factor and population factor of Li atoms led to the six most probable models with the lowest $R(0.25-0.26)$. Refining the six models by varying positional and isotropic temperature factors of all atoms did not lower R significantly. Difference Fourier maps had too many residual peaks of the same order of magnitude to find the remaining Li positions. However, once the $\mathrm{Si}-\mathrm{Si}$, $\mathrm{Si}-\mathrm{O}$ and $\mathrm{O}-\mathrm{O}$ peaks were located on the Patterson map there were still some non-zero density regions on this map. All possible $\mathrm{Si}-\mathrm{Li}$ vectors were computed and some $\mathrm{Si}-\mathrm{Li}$ peaks were identified, especially those in the planes $b=0, \frac{1}{2}$. By trial and error and using the Patterson map and distance constraints, we obtained a
structure model with $R=0 \cdot 18$. The five Li atoms still missing were located by successive Fourier analyses.
A refinement with isotropic temperature factors including all atoms of the structure reduced R_{w} from 0.14 to 0.06 after eight cycles of full-matrix refinement. The 255 substructure reflections alone with a mean $F_{\text {obs }}$ of 168 yielded an R_{w} of 0.023 , while the 1135 superstructure reflections alone with a mean $F_{\text {obs }}$ of 28 had an R_{w} of 0.082 . A refinement with anisotropic temperature factors for the heavy atoms improved R, but the determinant of the anisotropic coefficients had become non-positive for two Si and three O atoms. This was due either to poor diffraction data or to remaining

Table 2. Positional $\left(\times 10^{4}\right)$ and thermal $\left(\times 10^{2}\right)$ parameters

	x	y	z	$B\left(\AA^{2}\right)$
$\mathrm{Si}(11)$	3416 (2)	2500	0056 (2)	82 (6)
Si(12)	7540 (2)	2500	1386 (2)	74 (5)
Si(13)	4772 (2)	2500	7152 (2)	37 (5)
Si(14)	2003 (2)	2500	2924 (2)	33 (5)
$\mathrm{Si}(15)$	0406 (2)	2500	5773 (2)	83 (6)
Si(16)	8941 (2)	2500	8567 (2)	30 (5)
$\mathrm{Si}(17)$	6145 (2)	2500	4280 (2)	48 (5)
O(11)	3560 (3)	0265 (8)	0579 (3)	53 (9)
O(12)	7860 (4)	0342 (8)	1956 (3)	145 (10)
O(13)	4994 (3)	0305 (8)	7715 (3)	125 (10)
O(14)	2185 (3)	0283 (8)	3484 (3)	70 (9)
O(15)	0668 (4)	0316 (8)	6344 (3)	136 (10)
$\mathrm{O}(16)$	9269 (3)	0330 (7)	9175 (2)	38 (9)
$\mathrm{O}(17)$	6530 (3)	0283 (7)	4811 (2)	37 (8)
O(21)	1998 (5)	2500	9638 (4)	92 (14)
$\mathrm{O}(22)$	6186 (5)	2500	0977 (4)	60 (13)
O(23)	3352 (5)	2500	6744 (4)	45 (13)
O(24)	0626 (5)	2500	2447 (4)	93 (14)
O(25)	9082 (5)	2500	5278 (4)	71 (13)
O(26)	7611 (5)	2500	8143 (4)	95 (14)
O(27)	4745 (5)	2500	3985 (4)	87 (14)
$\mathrm{O}(31)$	4194 (4)	2500	9341 (4)	9 (12)
$\mathrm{O}(32)$	8436 (5)	2500	0682 (4)	88 (14)
$\mathrm{O}(33)$	5526 (6)	2500	6386 (4)	140 (15)
$\mathrm{O}(34)$	2842 (5)	2500	2228 (4)	120 (14)
$\mathrm{O}(35)$	1308 (5)	2500	5114 (4)	83 (13)
$\mathrm{O}(36)$	9918 (5)	2500	7957 (4)	73 (13)
O(37)	6967 (5)	2500	3561 (4)	49 (13)
Li(12)	3823 (8)	0072 (19)	4068 (6)	88 (21)
Li(15)	8123 (8)	0006 (20)	5448 (6)	108 (21)
Li(16)	6605 (8)	0112 (20)	8270 (6)	103 (22)
Li(17)	5255 (8)	9981 (20)	1173 (6)	126 (23)
Li(21)	2722 (15)	2500	8558 (12)	226 (40)
Li(23)	4176 (15)	2500	5491 (12)	258 (42)
Li(24)	1321 (11)	2500	1464 (9)	20 (28)
Li(25)	9695 (18)	2500	4271 (14)	355 (50)
Li(32)	4490 (12)	2500	2780 (10)	122 (33)
Li(36)	7272 (12)	2500	6977 (10)	90 (31)
Li(37)	5940 (13)	2500	9794 (10)	113 (32)
Li(41)	1962 (7)	9631 (17)	0192 (6)	33 (19)
Li(43)	3309 (8)	9681 (20)	7279 (7)	143 (23)
Li(46)	9515 (9)	0298 (20)	7108 (7)	168 (24)
Li(51)	0790 (14)	0278 (33)	8663 (10)	479 (40)
Li(53)	2373 (9)	0379 (20)	5977 (7)	173 (24)
Li(61)	1407 (15)	2500	7360 (12)	231 (40)
Li(64)	0082 (16)	2500	0076 (12)	230 (39)
$\mathrm{Li}(65)$	8701 (19)	2500	2956 (15)	404 (54)

errors in the resolution of the superstructure. A difference Fourier map showed that the residual background was generally within $\pm 0.2 \mathrm{e}$ and there was only one residual peak with a value above 0.5 e. This residual peak located at $(0.95,0.05,0.16)$ had a magnitude less than one third of a Li atom. Since it was only $0.8 \AA$ from Li(51), it was considered to be caused by one of the factors mentioned above. The scatter in the values of the isotropic temperature factors, the inability to refine meaningful anisotropic temperature factors and the relatively high R value for the superstructure reflections all indicate that this refinement is not as precise as we might wish. Table 2 contains the final atomic and isotropic thermal parameters. The bond distances and angles are listed in Table 3*.

Description of the structure

The unit cell of our $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ crystals contains 14 formula units, seven times as large as the cell described by Völlenkle, Wittman \& Nowotny (1968). Because electron diffraction showed only certain crystals to have a superstructure, we cannot say that the Völlenkle, Wittman \& Nowotny (1968) structure is, in fact, in error. They may have solved only the substructure or they may have indeed found a disordered crystal. Table 4 shows reasonable agreement between their Li occupation factors and the ratio of occupied Li sites over the number of available sites for ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$. We looked at two different crystals; both clearly showed superstructure reflections. Although it seems possible that Völlenkle, Wittman \& Nowotny (1968) determined the structure of disordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$, the question then still remains as to why disordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ is not a good conductor. Perhaps only a small fraction of polycrystalline $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ is disordered.
In this refinement of ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$, the Li atoms are referenced by two digits. The first indexes the atom in a particular subcell, whereas the second indexes the subcell. Thus, $\mathrm{Li}(34)$ refers to the third Li atom in the fourth subcell.

The general features of the SiO_{4}^{4-} arrangement are identical to those found by Völlenkle, Wittman \& Nowotny (1968). Seven isolated SiO_{4}^{4-} tetrahedra are located in the mirror plane at $y=\frac{1}{4}, \frac{3}{4}$ and are related by the 2_{1} axes along [010]. The SiO_{4} tetrahedra are more distorted than in most orthosilicates. Individual $\mathrm{Si}-\mathrm{O}$ distances and $\mathrm{O}-\mathrm{Si}-\mathrm{O}$ angles range from 1.58 to $1.69 \AA$ and from 103 to 116°, respectively. Mean $\mathrm{Si}-\mathrm{O}$ distances range from 1.623 to $1.646 \AA$. Such

[^1]scatter is consistent with the variation of mean bond lengths of SiO_{4} tetrahedra observed in a sample of 50 precisely determined orthosilicates (Baur, 1978). The
distortions correspond approximately to the bondstrength distributions (Table 5). By and large, longer $\mathrm{Si}-\mathrm{O}$ distances are associated with greater total $\mathrm{Li}-\mathrm{O}$

Table 3. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$ in $\mathrm{Li}_{4} \mathrm{SiO}_{4}$

Table 3 (cont.)
$\mathrm{O}(13)-\mathrm{Li}(43)-\mathrm{O}(23)$
$\mathrm{O}(13)-\mathrm{Li}(43)-\mathrm{O}(37)$ $\mathrm{O}(13)-\mathrm{Li}(43)-\mathrm{O}(12)$ $\mathrm{O}(23)-\mathrm{Li}(43)-\mathrm{O}(12)$ $\mathrm{O}(23)-\mathrm{Li}(43)-\mathrm{O}(37)$ $\mathrm{O}(12)-\mathrm{Li}(43)-\mathrm{O}(37)$
$84 \cdot 3(5)$
$115.6(6)$
119.2 (6)
111.7 (6)
$107 \cdot 0(6)$
$114 \cdot 2$ (6)

$\mathrm{O}(36)-\mathrm{Li}(46)-\mathrm{O}(15)$	$110.8(6)$
$\mathrm{O}(36)-\mathrm{Li}(46)-\mathrm{O}(24)$	$111.4(6)$
$\mathrm{O}(36)-\mathrm{Li}(46)-\mathrm{O}(14)$	$123.8(6)$
$\mathrm{O}(15)-\mathrm{Li}(46)-\mathrm{O}(14)$	$112.2(6)$
$\mathrm{O}(15)-\mathrm{Li}(46)-\mathrm{O}(24)$	$111.6(6)$
$\mathrm{O}(14)-\mathrm{Li}(46)-\mathrm{O}(24)$	$84.0(6)$

Table 4. Comparison of occupancies between ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ and $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ refined by Völlenkle, Wittman \& Nowotny (1968)

	Number of occupied sites	Number of available sites	Occupied $\frac{\text { sites }}{\text { available }}$	Occupation factor from Völlenkle
et al. (1968)				

bond strengths surrounding individual oxygen atoms. Table 5 shows that this is only approximately valid both for Pauling (1929) and Brown-Shannon (Brown \& Shannon, 1973) bond strengths. The poor correlation is probably partly due to the insufficient accuracy of the $\mathrm{Li}-\mathrm{O}$ distances (see the relatively large e.s.d.'s of 0.01 to $0.02 \AA$) and partly to the low overall accuracy of the refinement. Most likely, the e.s.d.'s are systematically too low. It is notable that the average $\mathrm{Si}-\mathrm{O}$ distance (over the seven independent SiO_{4} groups) of $1.635 \AA$ is very similar to the $\mathrm{Si}-\mathrm{O}$ distance of $1.637 \AA$ obtained by our refinement of the substructure.

Of the 42 sets of equivalent positions which could be occupied in the supercell, only 19 are occupied. These 19 sets can be divided into two groups. The first is made up of ten sets of special equivalent positions $[\mathrm{Li}(2 i), \mathrm{Li}(3 i), \mathrm{Li}(6 i)]$ with a multiplicity of two which are located on the mirror planes as are the Si atoms ($y=\frac{1}{4}, \frac{3}{4}$). The second group consists of nine sets of general equivalent positions with a multiplicity of four $[\mathrm{Li}(1 i), \mathrm{Li}(4 i)$, and $\mathrm{Li}(5 i)]$ which are located near the
planes $y=0$. Thus, two times ten and four times nine add up to the 56 Li atoms occupying 56 out of a possible 126 individual atomic sites per supercell. Fourteen Li atoms are tetrahedrally coordinated. In most of these tetrahedra, the $\mathrm{Li}-\mathrm{O}$ distances vary between 1.84 and $2.15 \AA$. The $\mathrm{Li}(23)$ tetrahedron is particularly distorted with $\mathrm{Li}-\mathrm{O}$ distances ranging from 1.91 to $2.43 \AA$. Actually this tetrahedron could also be viewed as a trigonal coordination with a nearby fourth neighbor. $\mathrm{Li}(51)$ and $\mathrm{Li}(53)$ are surrounded by five O atoms with $\mathrm{Li}-\mathrm{O}$ distances ranging from 1.96 to 2.38 $\AA . \mathrm{Li}(61), \mathrm{Li}(64)$, and $\mathrm{Li}(65)$ are octahedrally coordinated $(2 \cdot 10<\mathrm{Li}-\mathrm{O}<2 \cdot 62 \AA)$.

As in $\mathrm{Li}_{2} \mathrm{CO}_{3}, \mathrm{Li}_{3} \mathrm{BO}_{3}$ and $\mathrm{Li}_{5} \mathrm{AlO}_{4}$, the atoms in ordered $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ form a three-dimensional network with edge- and corner-shared $\mathrm{LiO}_{4}, \mathrm{LiO}_{5}$ and LiO_{6} polyhedra (Fig. 3) (Shannon, Taylor, English \& Berzins, 1977). In order to understand the good conductivity of substituted Li silicates such as $\mathrm{Li}_{4-x} \mathrm{Si}_{1-x} \mathrm{P}_{x} \mathrm{O}_{4}$, it is useful to analyze the connectivity of the Li sites. If we consider $\mathrm{Li}-\mathrm{Li}$ distances of less than $2.9 \AA$, a

Fig. 3. Projection along bof the LiO_{n} polyhedra.

Table 5. Coordinations of Li around O , observed and calculated $\mathrm{Si}-\mathrm{O}$ bond lengths (\AA) and bond strengths at oxygen atoms

| | Number of
 Li atoms
 about each
 oxygen | $d(\mathrm{Si}-\mathrm{O})$
 obs. | $d(\mathrm{Si}-\mathrm{O})$
 calc.* | Sum of $\mathrm{Li}-\mathrm{O}$
 bond strengths
 about O | $\mathrm{Si}-\mathrm{O}$
 bond
 strengths | Total
 bond
 strengths |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \ddagger | \ddagger | \ddagger | \ddagger | | | |

Table 6. $\mathrm{Li}-\mathrm{Li}$ distances along [010]
The distances m_{1} and m_{2} between Li polyhedra are related by a mirror plane and c by a center of symmetry.

	m_{1}	m_{2}		c
$\mathrm{Li}(12)$	3.13	2.96	$\mathrm{Li}(25)$	3.89
$\mathrm{Li}(15)$	3.05	3.04	$\mathrm{Li}(37)$	3.87
$\mathrm{Li}(16)$	3.18	2.91	$\mathrm{Li}(64)$	3.06
$\mathrm{Li}(17)$	3.07	3.02		
$\mathrm{Li}(41)$	3.49	2.60		
$\mathrm{Li}(43)$	3.43	2.66		
$\mathrm{Li}(46)$	3.41	2.68		
$\mathrm{Li}(51)$	3.38	2.71		
$\mathrm{Li}(53)$	3.51	2.58		

continuous network can be constructed. Fig. 4 is a projection of all the Li atoms in the unit cell. It shows all $\mathrm{Li}-\mathrm{Li}$ connections less than $2.9 \AA$ except those parallel to \mathbf{b}. If we look at Li in planes at $y \simeq 0$, there are continuous two-dimensional pathways such as $\quad \mathrm{Li}(41)-\mathrm{Li}(16)-\mathrm{Li}(17)-\mathrm{Li}(43)-\mathrm{Li}(53)-\mathrm{Li}(15)-$ $\mathrm{Li}(46)-\mathrm{Li}(51)-\mathrm{Li}(41)$ these atoms are all within 2.9 $\AA \AA$ of one another with the exception of $\operatorname{Li}(15)-\operatorname{Li}(46)$ at $2.96 \AA$]. The Li polyhedra at $y \simeq 0$, in addition to being connected to other Li atoms in the plane and in directions on diagonals between planes at 0 and $\frac{1}{4}$, are linked to other Li atoms equivalent by the mirror plane along [010]. These atoms lie within distances of $3.1 \AA$

Fig. 4. Projection along \mathbf{b} of all Li atoms in the unit cell. Open circles are at $y \simeq 0$; shaded circles are at $y=\frac{1}{4}$ or $\frac{3}{4}$. All $\mathrm{Li}-\mathrm{Li}$ distances indicated are less than $2.9 \AA$. Average e.s.d.'s of $\mathrm{Li}-\mathrm{Li}$ distances are $\pm 0.02 \AA$.
(see Fig. 5 and Table 6). If we consider the Li atoms at $y=\frac{1}{4}, \frac{3}{4}$, there are no direct pathways in the plane. The Li atoms equivalent by centers of symmetry form $\mathrm{Li}-\mathrm{Li}$ chains in the b direction $[\mathrm{Li}(2 i)-\mathrm{Li}(2 i)$, $\mathrm{Li}(3 i)-\mathrm{Li}(3 i)$ and $\mathrm{Li}(6 i)-\mathrm{Li}(6 i)]$. The $\mathrm{Li}(2)-\mathrm{Li}(2)$ and $\mathrm{Li}(3)-\mathrm{Li}(3)$ distances are quite long ($3.9 \AA$), but the $\mathrm{Li}(6)-\mathrm{Li}(6)$ pairs are close enough ($3.06 \AA$) to provide a path for mobile Li atoms. Clearly mobile Li atoms can follow many pathways both within the $y \simeq 0$ planes

Table 7. Edge- and corner-sharing between polyhedra in $\mathrm{Li}_{4} \mathrm{SiO}_{4}$
Mult. = multiplicity of element per polyhedron, $E=$ edge, $C=$ corner, $t=$ tetrahedron, $f=$ five coordination, $o=$ octahedron, $\mathrm{CN}=$ coordination number.

Atom	CN	Atom	Mult.	Distance	Shared elements	Atom	CN		Mult.	Distance	Shared elements
Li(12)	IV	Li(15)		2.51 A	E, t	Li(41)	IV	Li(41)		2.60 A	C, tt
		Li(36)		2.52	E, tt			Li(64)		2.67	E, to
		Li(23)		2.77	C, t			Li(51)		2.71	E, tf
		Li(23)		2.79	C, tt			Li(37)		2.75	C, tt
		Li(32)		2.81	C, tt			Li(64)		2.77	E, to
		$\mathrm{Li}(12)$		2.96	C, $t \mathrm{l}$			Li(16)		2.81	C, tt
								Li(24)		2.93	C, tt
Li(15)	IV	Li(53)		2.36	E, tf						
		Li(12)		2.51	E, tt	Li(43)	IV	Li(53)		$2 \cdot 30$	$E, t f$
		Li(25)		2.91	C, t t			Li(65)		2.65	E, to
		Li(46)		2.96	C, t t			Li(43)		2.66	C, tt
		Li(15)		3.04	C, tt			Li(61)		2.81	E, to
		Li(15)		3.05	C, t			Li(17)		2.83	C, tt
								Li(32)		2.88	C, tt
$\mathrm{Li}(16)$	IV	Li(17)		2.48	E, tt			Li(21)		2.90	C, tt
		Li(32)		2.54	E, t						
		Li(36)		2.81	C, tt	Li(46)	IV	Li(61)		2.54	E, to
		Li(41)		2.81	C, $t \mathrm{t}$			Li(46)		$2 \cdot 68$	C, tt
		Li(24)		2.85	C, tt			Li(65)		2.69	E, to
		Li(16)		2.91	C, $t t$			Li(51)		2.76	C, tf
								Li(36)		2.89	C, tt
								Li(15)		2.96	C, $t t$
Li(17)	IV	Li(37)		2.46	E, t	Li(51)	v	Li(21)		2.64	E, ft
		Li(16)		2.48	E, t			Li(51)		2.71	C, ft
		Li(21)		2.76	C, tt			Li(41)		2.71	E,ft
		Li(43)		2.83	C, t			Li(61)		2.75	$E, f o$
		Li(37)		2.97	C, tt			Li(46)		2.76	C, ft
		Li(17)		3.02	C, tt			Li(64)		2.94	E, fo
		Li(17)		3.07	C, tt			Li(24)		2.95	C, ft
								Li(64)		3.00	E,fo
Li(21)	IV	Li(61)		$2 \cdot 30$	E, 10						
		Li(51)	$(\times 2)$	2.64	E, tf	Li(53)	V	Li(43)		$2 \cdot 30$	E, ft
		Li(17)	$(\times 2)$	2.76	C, tt			$\mathrm{Li}(15)$		2.36	E,ft
		Li(43)	$(\times 2)$	2.90	C, tt			Li(53)		2.58	C, ft
								Li(23)		2.69	E,ft
Li(23)	IV							Li(65)		2.91	E,fo
		$\mathrm{Li}(12)$	$(\times 2)$	2.77	C, tt			Li(25)		2.94	C, fl
		Li(12)	$(\times 2)$	2.79	C, $t \mathrm{t}$			Li(61)		3.01	E, fo
Li(24)	IV	Li(64)		2.51	E, to	Li(61)	V1	Li(21)		$2 \cdot 30$	E, ot
		Li(16)	$(\times 2)$	2.85	C, tt			Li(46)	$(\times 2)$	2.54	E,ot
		Li(41)	$(\times 2)$	2.93	C, tt			Li(51)	$(\times 2)$	2.75	E, of
		Li(51)	$(\times 2)$	2.95	C, tf			Li(43)	$(\times 2)$	2.81	E, ot
								Li(53)	$(\times 2)$	3.01	E, of
Li(25)	IV	Li(65)		$2 \cdot 30$	E, to			Li(65)	$(\times 2)$	3.09	E,oo
		Li(15)	$(\times 2)$	2.92	C, tt						
		Li(53)	$(\times 2)$	2.94	$C, t f$						
Li(32)	IV	Li(16)	$(\times 2)$	2.54	E, tt	Li(64)	VI	Li(24)		2.51	E, ot
		Li(12)	$(\times 2)$	2.81	C, t t			Li(41)	$(\times 2)$	2.67	$E, o t$
		Li(43)	$(\times 2)$	$2 \cdot 88$	C, t			Li(41)	$(\times 2)$	2.77	E, ot
								$\mathrm{Li}(51)$	$(\times 2)$	2.94	E, of
Li(36)	IV	Li(12)	$(\times 2)$	2.52	E, tt			Li(51)	($\times 2$)	3.00	E, of
		Li(16)	$(\times 2)$	2.81	C, tt			Li(64)	$(\times 2)$	3.06	E, oo
		Li(46)	$(\times 2)$	2.89	C, tt						
						Li(65)	VI	Li(25)		$2 \cdot 30$	E, ot
Li(37)	IV	Li(17)	$(\times 2)$	2.46	E, t			Li(43)	$(\times 2)$	2.65	E,ot
		Li(41)	$(\times 2)$	2.75	C, tt			Li(46)	$(\times 2)$	2.69	E, ot
		Li(17)	$(\times 2)$	2.97	C, $t \mathrm{t}$			Li(53)	$(\times 2)$	2.91	E, of
								Li(61)	$(\times 2)$	3.09	E,oo

Fig. 5. $\mathrm{Li}-\mathrm{Li}$ distances along [010].
and between the $y \simeq 0$ and $\frac{1}{4}$ planes. Although twodimensional connectivity is sufficient for good conductivity, as is apparent from the excellent conductivity of $\beta-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Li}_{4} \mathrm{SiO}_{4}$ clearly contains paths allowing threedimensional conductivity.

Li connectivity can also be analyzed by studying the Li polyhedral linkage. Geller (1973) has associated good conductivity in AgI-based solid electrolytes with networks of face-shared anion polyhedra. In oxides, face-sharing of tetrahedra is not observed and for other polyhedra it is rare. The next best arrangement is a continuous network of edge-shared polyhedra. In $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ we have extensive edge-sharing of polyhedra and no face-sharing of LiO_{n} polyhedra as found by Völlenkle, Wittman \& Nowotny (1968). It is likely that the good conductivity arises from the extensive edgesharing. Table 7 summarizes all $\mathrm{Li}-\mathrm{Li}$ distances <3.01 \AA and lists shared polyhedral elements. As anticipated, the shortest $\mathrm{Li}-\mathrm{Li}$ distances are associated with shared polyhedral edges. All Li^{+}ions except $\mathrm{Li}(24)$ and $\mathrm{Li}(25)$ share edges with at least two other polyhedra. The shortest distances (down to $2.30 \AA$) and, therefore, the best possibilities for Li^{+}ion transfer from one site to an adjacent site are associated with edges shared between tetrahedra and five- or six-coordinated polyhedra. The next shortest distances ($2 \cdot 46-2.54 \AA$) are those associated with edges shared between tetrahedra. Shared edges between five- and six-coordinated polyhedra result in $\mathrm{Li}-\mathrm{Li}$ distances of 2.75 to $3.01 \AA$. Extensive Li^{+}ion transfer between corner-shared polyhedra probably does not occur because the path would be
more indirect. Consistent with the structure of the ordered phase as described here, $\mathrm{Li}_{4} \mathrm{SiO}_{4}$ has very low ionic conductivity. Introducing either Li vacancies as in $\mathrm{Li}_{4+x} \mathrm{Si}_{1-x} \mathrm{P}_{x} \mathrm{O}_{4}$ or $\mathrm{Li}_{4-2 x} \mathrm{Si}_{1-x} \mathrm{~S}_{x} \mathrm{O}_{4}$ or Li interstitials as in $\mathrm{Li}_{4+x} \mathrm{Si}_{1-x} \mathrm{Al}_{x} \mathrm{O}_{4}$ at levels of $x=0.2$ increases σ by factors of $10^{3}-10^{4}$ (Shannon, Taylor, English \& Berzins, 1977). Location of the vacancies or interstitials in the substituted phases cannot be determined without refining the structure of one of these phases.

We would like to thank E. P. Moore for assistance with the precession and Weissenberg photos, F. C. Zumsteg for making the SHG tests, A. Ferretti for growing the crystals of $\mathrm{Li}_{4} \mathrm{SiO}_{4}$, R. J. Bouchard for critically reviewing the manuscript, and the Computer Center at the Univ. of Illinois at Chicago for computer time.

References

Baur, W. H. (1971). Am. Mineral. 56, 1573-1599.
Baur, W. H. (1978). Acta Cryst. B34, 1751-1756.
Brown, I. D. \& Shannon, R. D. (1973). Acta Cryst. A29, 266-282.
Geller, S. (1973). Fast Ion Transport in Solids/Solid-State Batteries and Devices, edited by W. Van Gool, pp. 607616. Amsterdam: North-Holland.

Gratzer, W., Bittner, H., Nowotny, H. \& Seifert, K. (1971). Z. Kristallogr. 133, 260-263.
hodge, I., Ingram, M. \& West, A. (1976). J. Am. Ceram. Soc. 59, 360-366.
Hu, Y.-W., Raistrick, I. D. \& Huggins, R. A. (1976). Mater. Res. Bull.11, 1227-1230.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 155-158, 316-317. Birmingham: Kynoch Press.
Lazarev, A. N., Kolesova, V., Solntseva, L. \& MirgorodskiI, A. (1973). Izv. Akad. Nauk SSSR, Neorg. Mater. (English translation) 9, 1747-1752.
Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.
Shannon, R. D. \& Taylor, B. E. (1977). US Patent 4,042,482.
Shannon, R. D., Taylor, B. E., English, A. \& Berzins, T. (1977). Electrochim. Acta, 22, 783-796.

Völlenkle, H., Wittman, A. \& Nowotny, H. (1968). Monatsh. Chem. 99, 1360-1371.
West, A. (1973). J. Appl. Electrochem. 3, 327-335.

[^0]: * On leave of absence from CNRS, Laboratoire de Cristallographie, Grenoble, France.
 \dagger To whom correspondence should be addressed.
 \ddagger Contribution No. 2587.

[^1]: * A list of observed and calculated structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 34374 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

